高校生も納得!テイラー展開・マクローリン展開の証明と使い方

数学 2019.6.20

みなさんはテイラー展開(級数)・マクローリン展開(級数)という言葉を聞いたことありますか?

理系の学生であれば大学1年生で習うことなので大学受験に出ることはないですが高校生で習う微分の知識だけで証明することができ、物理などの近似式でも使えるとても便利な公式です。

たまに学校の教科書にも載っているので確かめてみてください。

これらを使いこなせば、√2、sin1、e(自然対数)のような無理数の近似値を手計算で求めることができます。

ぜひ、この記事を読んで実際に無理数を計算してみましょう!



1.テイラー展開とは?

テイラー展開とは関数を
テイラー展開 公式 …①
と表したものです。

このように表すことが出来れば、どんなxを代入してもf(x)を求めることが出来ます。

例えば、次のような関数について考えてみましょう。

テイラー展開 sin

x=1を代入してみます。

f(1)=sin1=…

このままではsin1の値を求めることが出来ません。

ですがテイラー展開をして①のように表せることが出来れば、この値を求めることが可能になります!

 

最も簡単な例として二次関数があります。

例えば

という関数を考えたとき、①と比較すると
テイラー展開 定数
であり、f(1)=5+3+4=12と求めることが出来ます。

テイラー展開により①のように表せることが出来れば、xにどんな値を代入しても求めることが可能になるのです。

つまり、電卓やexcelを使わずにどんな値でも手計算で求めることが出来るのです。

よく使うものとして、sin,cos,e,√などがあります。



2.テイラー展開の証明

テイラー展開の証明を示します。

ここでは近似式の知識を利用します
近似式の知識に不安を覚える場合は、近似式とは?練習問題で微分の応用を理解しよう!の記事を参考にしましょう。

1.テイラー展開とは?で記載した①において、
aの値は予め自分で好きに決めることができます。

kを求めることが今回の目的です。

テイラー展開 証明の求め方

①にx=aを代入すればx-aの部分が全て0、
すなわちとなります。

よって、 =  f(a) です。

テイラー展開 証明の求め方

ここで、f(x)を微分してみます。

するとテイラー展開 1回微分となるので
テイラー展開 求め方を求めた時と同じようにx=aを代入しテイラー展開 求め方= f'(a)となります。

テイラー展開 求め方の求め方

さらに、f'(x)を微分してみます。

するととなるので
x=aを代入しと求めることができます。

テイラー展開 求め方の求め方

同様に微分、x=aを代入、微分、x=aを代入、…を繰り返していくと

テイラー展開 係数 求め方

と、なっていることに気づきます。

実際にn=0,1,2はこの式に当てはめてみると上で求めたものと一致しています。(※0!=1)

〇まとめ

以上より、テイラー展開は

テイラー展開 証明 公式

となります。

また、ここで注意してほしいことがあります。

それはf(x)はaという値で微分可能であるということです。

もし微分可能でなければ全てのkは求めることが出来ません。

その一例としてテイラー展開 微分不可をテイラー展開する際はx=1で微分可能ではないのでaは1以外の値に決めなくてはいけません。



3.テイラー展開とマクローリン展開の違い

テイラー展開を学ぶ際、必ずと言っていいほどマクローリン展開という言葉も出てきます。

マクローリン展開はテイラー展開におけるaに0を代入したものです。

すなわち、

マクローリン展開 公式

となるものです。

aの値は自分で決めることができるので、どんな値を代入しても大丈夫なのですが
ほとんどの場合a=0として求めることが多いです。
その理由は0を代入すると簡単に計算できるからです。

マクローリン展開は実際に使うことが多いので、覚えといてください。



4.マクローリン展開のよく使う公式一覧

マクローリン展開のよく使う3つの公式とその求め方を紹介します。

公式一覧

マクローリン展開のよく使う公式

求め方

【sinx】

マクローリン展開sinの求め方

【cosx】

マクローリン展開cosの求め方
マクローリン展開e



5.マクローリン展開の練習問題

【問題】√2の近似値を求めよ

【解答】公式に従ってマクローリン展開すると

となるので、x=1を代入して

と、計算することが出来ます。

ちなみに、一般的には√2=1.41421356…なので今回の計算では小数第一位まで近似できたと言えます。

マクローリン展開をさらに行うとこの値に近づきます。

【問題】eの近似値を求めよ

【解答】マクローリン展開を行うと

となるので、x=1を代入して
マクローリン展開 e 近似値
と計算することが出来ます。

一般的にe=2.7182818…と言われているので小数第二位まで近似できたと言えます。

このように高校数学の微分の知識を使えば電卓でしか求めることが出来なかった無理数の近似値を手計算で求めることが出来ます。

テーラー展開、マクローリン展開は、理系の学生であれば大学1年生で学ぶことなのでぜひ覚えておきましょう!


アンケートにご協力ください!【暗記科目アンケート】

※アンケート実施期間:2019年7月2日~

受験のミカタでは、読者の皆様により有益な情報を届けるため、中高生の学習事情についてのアンケート調査を行っています。今回はアンケートに答えてくれた方から10名様に500円分の図書カードをプレゼントいたします。


アンケートに答える


最新情報を受け取ろう!

プッシュ通知を許可する

受験のミカタから最新の受験情報を配信中!

この記事の執筆者

ニックネーム:りょう

早稲田大学中退後、上智大学に入学
埼玉県出身
好きなこと:旅行、サッカー
得意科目:数学、物理
ハマっていること:筋トレ