三平方の定理を慶應生が超わかりやすく解説!公式・証明・計算問題付き

数学 2016.8.10
三平方の定理を慶應生が超わかりやすく解説!公式・証明・計算問題付き

三平方の定理の公式について、数学が苦手な人でも理解できるように、スマホ・PCでも見やすいイラストを使いながら現役の慶應生が三平方の定理を慶應生が超わかりやすく解説!公式・証明・計算問題付き解説しています。

三平方の定理の公式はとても重要なので、本記事で必ず覚えましょう!

また、本記事では、「なんで三平方の定理は成り立つの?」と疑問に感じている人のために、「三平方の定理の証明」も丁寧に解説しています。

この他にも、知っておくと周りの生徒に差をつけることができる知識もたくさん紹介しているので、ぜひ最後まで読んで、三平方の定理をマスターしましょう!

 

    ①三平方の定理:公式

    まずは三平方の定理の公式を紹介します。三平方の定理とは、直角三角形の直角を挟む2辺の長さをa, bとし、斜辺をcとすると、『c2 = a2 + b2が成り立つことを言います。

    下の図をご覧ください。

    【三平方の定理】

    三平方の定理公式

    この図だと三平方の定理の公式のイメージがわきやすいでしょう。直角三角形において、斜辺(1番長い辺)の2乗は、残りの2辺のそれぞれの2乗の和に等しいというのが三平方の定理の公式です。

    三平方の定理の公式はとても重要なので必ず覚えましょう!

    参考:三平方の定理は、別名「ピタゴラスの定理」とも呼ばれています。ピタゴラスイッチのあのピタゴラスです。

     

      ②三平方の定理:証明

      先ほどで、三平方の定理の公式を紹介しました。では、なぜ三平方の定理の公式は成り立つのでしょうか?

      この章では、三平方の定理の公式が成り立つ証明をしていきます。まず、下の図をご覧ください。

      三平方の定理の証明解説

      このように、直角三角形を3つ組み合わせた図形を考えてみましょう。(薄い緑の2つの直角三角形は同じ形です。)

      この図形を利用して、三平方の定理の公式を証明していきます!

      まずは、台形ACDEの面積を求めてみましょう。

      (台形ACDE)

      = (AC+ED)×CD ÷ 2

      = (b+a)×(a+b)÷2

      = (a+b)2/2

      ですね。

      また、この台形ACDEは、3つの直角三角形からできているので、

      (台形ACDE)= (三角形ABC)+(三角形EBD)+(三角形ABE)

      となりますね。この右辺を数式で表現しましょう。

      (右辺)

      = (ab)/2 + (ab)/2 + c2/2

      = ab + c2/2

      となります。よって、先ほど求めた台形の面積と比較して、

      (a+b)2/2 = ab + c2/2

      なので、両辺を2倍して整理して、

      a2 + 2ab + b2 = 2ab + c2

      より、

      a2 + b2 = c2

      となります。これで三平方の定理の公式が証明できました♪

      三平方の定理の公式の証明方法はこの他にもいくつかあるのですが、今回は1番シンプルな証明方法を紹介しました。

      他の証明方法も学習してみたい人は、三平方の定理の証明をいくつか紹介した記事をご覧ください。

       

      ③三平方の定理:計算と解き方

      ここからは、三平方の定理をより実践に近い形で使って、計算してみましょう。

      【三平方の定理:計算その1】

      三平方の定理計算問題

      このような直角三角形があるとき、aの値を三平方の定理で求めてみましょう!

      三平方の定理は、「斜辺の2乗は、残りの2辺のそれぞれの2乗の和に等しい」という公式でした。

      なので、

      52 = a2 + 42

      という式が立てられます。よって、

      25 = a2 + 16 なので、

      a2 = 9 より、a=3

      です。(a=-3という値もありますが、辺の長さがマイナスなのは不適なのでa=3のみとなります。)

       

      【三平方の定理:計算問題その2】

      三平方の定理計算問題

      次は斜辺を三平方の定理から求めるパターンです。三平方の定理を使って、

      a2 = 52 + 122

      という式が立てられますね。よって、

      a2 = 25 + 144 = 169

      なので、a=13となります。

      いかがでしたか?三平方の定理を使って辺の長さを求める解き方がわかりましたか?

      以上で紹介した三平方の定理の解き方は非常に基本的なことなので必ずマスターしましょう!

       

        ④三平方の定理:比と角度

        三平方の定理で学習する直角三角形には、必ず暗記しなければならない三角形の形状がいくつかあります。辺の比と角度の大きさを暗記しなければいけません。

        では、三平方の定理で代表的な直角三角形を紹介します。ここに載せてある直角三角形の比と角度は必ず暗記してください!

        代表的な直角三角形の一覧

        ここで紹介した代表的な直角三角形は計算問題でもよく問われます。繰り返しになりますが、必ず形状を暗記しましょう!

         

          ⑤三平方の定理:計算問題

          最後に、三平方の定理の計算問題を1問解いてみましょう!この問題が解ければ、三平方の定理はもう完璧です!

          [三平方の定理:計算問題]
          下の図のような直角三角形がある。この時、a, bの値を求めよ。
          三平方の定理計算問題の図

          [解答&解説]

          この三平方の定理の問題では、60°という角度に注目しましょう。60°の直角三角形は、辺の比が決まっていましたね?

          ④三平方の定理:比と角度の図より、60°の直角三角形は辺の比が1:2:√3でした。

          よって、

          a = 5 × 2 = 10・・・(答)

          b = 5 × √3 = 5√3・・・(答)

          となります。念のため、三平方の定理で確認しておきましょう。

          52 + b2

          = 25 + 75

          = 100 (=a2)

          になっていますね。三平方の定理の公式が成り立っています。

           

            まとめ

            三平方の定理に関する説明はこれで以上です。

            繰り返しになりますが、三平方の定理の公式は、数学の中でも非常に重要な公式の1つです。
            必ず暗記するようにしてください。

            理系科目だけに力を注いでいませんか?
            10万人近くもの高校生が読んでいる読売中高生新聞を購読して国語・社会・英語の知識もまとめて身につけましょう!購読のお申し込みはここをクリック!

            アンケートにご協力ください!【外部検定利用入試に関するアンケート】

            ※アンケート実施期間:2021年1月13日~

            受験のミカタでは、読者の皆様により有益な情報を届けるため、中高生の学習事情についてのアンケート調査を行っています。今回はアンケートに答えてくれた方から10名様に500円分の図書カードをプレゼントいたします。


            アンケートに答える


            受験生の勉強に役立つLINEスタンプ発売中!

            受験生が使いやすい「受験のミカタ」勉強LINEスタンプ販売中!


            最新情報を受け取ろう!

            プッシュ通知を許可する

            受験のミカタから最新の受験情報を配信中!

            この記事の執筆者

            ニックネーム:受験のミカタ編集部

            「受験のミカタ」は、難関大学在学中の大学生ライターが中心となり運営している「受験応援メディア」です。