外接円の半径の求め方がイラストで誰でも即わかる!練習問題付き

外接円とは何か、および外接円の半径の求め方について、数学が苦手な人でも理解できるように、現役の早稲田大生が解説します。
これを読めば、外接円とはどのようのものか、外接円の半径の求め方がマスターできるでしょう。
スマホでも見やすい図を使って外接円の半径の求め方を解説しているので、わかりやすい内容です。
最後には、外接円の半径に関する練習問題も用意した充実の内容です。
ぜひ最後まで読んで、外接円、外接円の半径の求め方をマスターしてください!
1:外接円とは?(内接円との違いも)
まずは外接円とは何か?について解説します。
外接円とは、三角形の外にあり、全ての頂点を通る円のことです。
三角形の各辺の垂直二等分線の交点が外接円の中心となります。
よくある疑問として、「外接円と内接円の違い」がありますので、解説しておきます。
内接円とは、三角形の中にあり、全ての辺と接する円のことです。
三角形の角の二等分線の交点が内接円の中心となります。
※内接円を詳しく学習したい人は、内接円について詳しく解説した記事をご覧ください。
2:外接円の半径の求め方
では、外接円の半径を求める方法を解説します。
みなさん、正弦定理は覚えていますか?外接円の半径を求めるには、正弦定理を使用します。
※正弦定理があまり理解できていない人は、正弦定理について解説した記事をご覧ください。
三角形の3つの角の大きさがA、B、Cで、それらの角の対辺の長さがa、b、c、外接円の半径をRとすると、
a/sinA = b/sinB = c/sinC = 2R
という公式が成り立ちました。
外接円の半径は正弦定理を使って求めることができたのですね。
したがって、三角形の角の大きさと、その角の対辺の長さがわかれば外接円の半径は求められます。
3:外接円の半径の求め方(具体例)
では、以上の外接円の求め方(正弦定理)を踏まえて、実際に外接円の半径を求めてみましょう!
外接円:例題
下図のように、3辺が3、5、6の三角形ABCの外接円の半径Rを求めよ。
解答&解説
まずは三角形のどれかの角の大きさを求めなければいけません。
3辺から1つの角の大きさを求めるには、余弦定理を使えばよいのでした。
※余弦定理を忘れてしまった人は、余弦定理について解説した記事をご覧ください。
余弦定理より、
cosA
=(5²+6²-3²)/ 2×5×6
= 52/60
=13/15
なので、
(sinA)²
=1 – (13/15)²
=56/225
Aは三角形の角なので 0°<A<180°です。
よって、sinA>0より、
sinA=(2√14)/15
正弦定理より、
2R
=3 ÷ {(2√14)/15}
=(45√14)/28
となるので、求める外接円の半径Rは、
(45√14)/56・・・(答)
となります。
いかがですか?
外接円の半径を求めるにあたっては、1つの角の大きさとその対辺の長さが必要です。
3辺の長さがわかっていて、角の大きさがわかっていないときは、まずは余弦定理を使って角の大きさを求めることを頭にいれておきましょう!
4:外接円の半径を求める練習問題
最後に、外接円の半径を求める練習問題を1つ用意しました。
ぜひ解いてみてください。
外接円:練習問題
AB=2√2、AC=3、∠A=45°の三角形ABCにおける外接円の半径Rを求めよ。
解答&解説
まずは三角形ABCの図を書いてみましょう。下のようになりますね。
∠Aがわかってるので、BCの長さが求まれば外接円の半径が求められますね。
余弦定理より
BC²
= AB²+AC²-2×AB×AC×cosA
=(2√2)²+3²-2×2√2×3×cos45°
=8+9-12
= 5
※2辺とその間の角から残りの辺の長さを求めるときにも余弦定理が使えました。忘れてしまった人は、余弦定理について解説した記事をご覧ください。
BC>0より、
BC=√5 となります。
これでようやく外接円の半径を求める条件が整いました。
正弦定理より
2R
= BC/sinA
= √5÷1/√2
= √10
※sin45°=1/√2ですね。
よって、
R=√10 /2 ・・・(答)
となります。
さいごに
いかがでしたか?
外接円とは何か・外接円の半径の求め方の解説は以上になります。
「外接円の半径は、正弦定理で求めることができる」ということを必ず忘れないようにしておきましょう!